Stepanov’s Method Applied to Binomial Exponential Sums

نویسندگان

  • TODD COCHRANE
  • CHRISTOPHER PINNER
چکیده

For a prime p and binomial axk+bxl with 1 ≤ l < k < 1 32 (p−1) 2 3 , we use Stepanov’s method to obtain the bound ∣∣∣∣∣ p−1 ∑ x=1 ep(ax k + bx) ∣∣∣∣∣ max { 1, l∆− 1 3 } 1 4 k 1 4 p 3 4 , where ∆ = k−l (k,l,p−1) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Stepanov’s Method for Exponential Sums Involving Rational Functions

For a non-trivial additive character ψ and multiplicative character χ on a finite field Fq , and rational functions f, g in Fq(x), we show that the elementary Stepanov-Schmidt method can be used to obtain the corresponding Weil bound for the sum ∑ x∈Fq\S χ(g(x))ψ(f(x)) where S is the set of the poles of f and g. We also determine precisely the number of characteristic values ωi of modulus q1/2 ...

متن کامل

EXPONENTIAL SUM ESTIMATES OVER SUBGROUPS AND ALMOST SUBGROUPS OF Zq, WHERE q IS COMPOSITE WITH FEW PRIME FACTORS

In this paper we extend the exponential sum results from [B-K] and [B-G-K] for prime moduli to composite moduli q involving a bounded number of prime factors. In particular, we obtain nontrivial bounds on the exponential sums associated to multiplicative subgroups H of size q, for any given δ > 0. The method consists in first establishing a ‘sum-product theorem’ for general subsets A of Z. If q...

متن کامل

On Delta-Method of Moments and Probabilistic Sums

We discuss a general framework for determining asymptotics of the expected value of random variables of the form f(X) in terms of a function f and central moments of the random variable X . This method may be used for approximation of entropy, inverse moments, and some statistics of discrete random variables useful in analysis of some randomized algorithms. Our approach is based on some variant...

متن کامل

Symmetric and Centered Binomial Approximation of Sums of Locally Dependent Random Variables

Stein’s method is used to approximate sums of discrete and locally dependent random variables by a centered and symmetric Binomial distribution. Under appropriate smoothness properties of the summands, the same order of accuracy as in the Berry-Essen Theorem is achieved. The approximation of the total number of points of a point processes is also considered. The results are applied to the excee...

متن کامل

Optimal binomial, Poisson, and normal left-tail domination for sums of nonnegative random variables

Exact upper bounds on the generalized moments E f(Sn) of sums Sn of independent nonnegative random variables Xi for certain classes F of nonincreasing functions f are given in terms of (the sums of) the first two moments of the Xi’s. These bounds are of the form E f(η), where the random variable η is either binomial or Poisson depending on whether n is fixed or not. The classes F contain, and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009